检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
基于Transformer模型的5G功放预失真研究
DOI:
,
PDF
,
下载:
57
浏览: 472
作者:
王静怡 陈景豪 许高明
;
作者单位:
宁波大学信息科学与工程学院
;
关键词:
transformer;功放;记忆效应;深度学习
;
摘要:
为了补偿功放的非线性失真和记忆效应,本文基于一种基于深度学习的Transformer模型用于射频功放非线性建模的数字预失真算法。该模型具有长时序依赖捕获和交互能力,可以很好地表征功放的强非线性失真和记忆效应。为了验证该模型的建模性能和线性化效果,对比了当下流行的数字预失真器模型,实验结果表明,相比于FFNN模型和LSTM模型,建模精度提高了~2.1dB,同时模型参数量减少了~21%。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库