检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
基于特征回归的单目深度图无标记人体姿态估计
DOI:
,
PDF
,
下载:
57
浏览: 464
作者:
陈莹 沈栎
;
作者单位:
江南大学轻工过程先进控制教育部重点实验室
;
关键词:
计算机视觉;机器学习;像素分类;深度图像;人体姿态估计;点云
;
摘要:
单目深度图无标记人体姿态估计问题,由于动作的多样性,人体自遮挡,运动无规律等因素的影响,导致系统准确率低,鲁棒性不强和运行效率低。为此提出一种基于单目深度图点云的特征提取方法和回归方法,利用特征回归和关节点分类,可以在不使用时间信息的情况下,从单目深度图出估计出人体的关节点坐标。实验结果表明,与其他基于单目深度数据的姿态估计方法,以及相同情况下的多目方法比较,该方法的都能保持很好的精度。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库