检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
基于卷积神经网络的电力设备缺陷文本分类模型研究
DOI:
,
PDF
,
下载:
82
浏览: 423
作者:
刘梓权 王慧芳 曹靖 邱剑
;
作者单位:
浙江大学电气工程学院
;
关键词:
电力文本处理;缺陷分类;卷积神经网络;机器学习
;
摘要:
电网生产管理系统中存在大量闲置的设备缺陷记录文本。针对电力设备缺陷文本的特点,构建了基于卷积神经网络的缺陷文本分类模型。首先通过分析大量电力设备缺陷记录,归纳了电力设备缺陷文本的特点;然后参考中文文本分类的一般流程,并考虑缺陷文本的特点,建立了一种基于卷积神经网络的电力缺陷文本分类模型;最后通过算例对基于卷积神经网络的缺陷分类模型和多种传统机器学习分类模型进行全面比较。算例结果表明,所提出的缺陷文本分类模型能显著降低分类错误率,在分类效率上也比较可观。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库