回归核极限学习机的多标记学习算法
DOI,PDF 下载: 89  浏览: 482 
作者王一宾1,2程玉胜1,2何月1裴根生1
摘要:
基于极限学习机(ELM)的多标记学习算法多使用ELM分类模式,忽略标记之间存在的相关性.为此,文中提出结合关联规则与回归核极限学习机的多标记学习算法(ML-ASRKELM).首先通过关联规则分析标记空间,提取标记之间的规则向量.然后通过提出的多标记回归核极限学习机(ML-RKELM)得出预测结果.若规则向量不为空,将规则向量与预测结果运算得出最终预测结果,否则最终结果即为ML-RKELM的预测结果.对比实验表明MLASRKELM与ML-RKELM性能较优,统计假设检验进一步说明文中算法的有效性.

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2