文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
基于改进线性学习算法的核动力系统事故诊断研究
DOI
:
,
PDF
下载:
62
浏览: 390
作者
:
赵鑫
;
蔡琦
;
赵新文
;
王晓龙
;
作者单位
:
海军工程大学核科学技术学院
;
关键词
:
事故诊断框架
;
改进线性学习
;
支持向量机
;
船用核动力系统
;
摘要:
为解决核动力系统事故类型多样且故障严重程度难以确定的问题,在传统线性模型的基础上引入层级结构和嵌套结构,并选用支持向量机分类模型作为结构内的诊断模型;采用线性学习实现计算结果的融合,通过分析事故运行过程和机理选取单个分类模型的训练样本,并确定对应类别事故的有效识别区域及敏感参数。结果表明,本文提出的事故诊断框架的识别准确率达到99%以上,可为大型系统的事故诊断提供参考。
投稿
相关文章
应用免疫检查点抑制剂慢性阻塞性肺病治疗的探索
体育课与课余体育活动整合研究
品管圈在提高跌倒高危病人复评率的效果观察及应用
摄食训练食物温度的精准分级对脑卒中吞咽障碍患者的影响研究
论存在函数不能用二次迭代函数表示
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2