检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
高度不平衡数据的代价敏感随机森林分类算法
DOI:
,
PDF
,
下载:
57
浏览: 353
作者:
平瑞 周水生 李冬
;
作者单位:
西安电子科技大学数学与统计学院
;
关键词:
不平衡数据;聚类采样;代价敏感学习;随机森林
;
摘要:
在处理高度不平衡数据时,代价敏感随机森林算法存在自助法采样导致小类样本学习不充分、大类样本占比较大、容易削弱代价敏感机制等问题.文中通过对大类样本聚类后,多次采用弱平衡准则对每个集群进行降采样,使选择的大类样本与原训练集的小类样本融合生成多个新的不平衡数据集,用于代价敏感决策树的训练.由此提出基于聚类的弱平衡代价敏感随机森林算法,不仅使小类样本得到充分学习,同时通过降低大类样本数量,保证代价敏感机制受其影响较小.实验表明,文中算法在处理高度不平衡数据集时性能较优.
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库