检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
采用分数阶动量的卷积神经网络随机梯度下降法
DOI
:
,
PDF
下载:
48
浏览: 383
作者
:
阚涛1
;
高哲1,2
;
杨闯1
;
;
;
;
;
作者单位
:
1.辽宁大学数学院;2.辽宁大学轻型产业学院
;
关键词
:
卷积神经网络
;
分数阶差分
;
随机梯度下降
;
摘要:
针对随机梯度下降法可能会收敛到局部最优的问题,文中提出采用分数阶动量的随机梯度下降法,提高卷积神经网络的识别精度和学习收敛速度.结合基于动量的随机梯度下降法和分数阶差分运算,改进参数更新方法,讨论分数阶阶次对网络参数训练效果的影响,给出阶次调整方法.在MNIST、CIFAR-10数据集上的实验表明,文中方法可以提高卷积神经网络的识别精度和学习收敛速度.
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2