摘要: 文章提出一种基于深度学习的工业车辆驾驶行为识别的方法。该方法对工业车辆在实际工厂环境中行驶的特点进行分析,将三轴加速度传感器和三轴角速度传感器采集到的数据进行预处理,根据处理结果将数据送入深度神经网络训练,完成对工业车辆驾驶行为的识别。系统先对样本数据使用数据插值、标准化处理等方法进行预处理,通过数据增强算法减少过拟合的影响,再基于长短期记忆网络(LSTM)处理时间序列数据,构建出CNN+LSTM的深度网络模型,用于驾驶行为的识别。测试结果表明,所提模型识别整体准确率可达96.51%,能够准确地识别出工业车辆行驶的状态。