引言
当下提出低碳生态环保发展的背景之下,需要对方发电厂热能动力系统,做出全面的优化处理以及良好的节能改造应用。对于这两方面的提升,能够对整个发电厂生产技术水平能力做到进一步的提高,从而能够使得整个的动力系统变得更加的完善,对于各种能源消耗能够做到有效的控制,让发电厂既能够获得可观的经济收益,同时对于自身的社会价值能够做出进一步的提升。
1热能动力系统的基本概述
1.1火力发电的概述
所谓火力发电,主要是指借助一些化石燃料或是焚烧垃圾来获取相应的内能,并通过发电动力转换装置来产生电力能源,其经历的主要过程是:由燃烧化学能转变为蒸汽动能,进而通过机械能的过渡转换,最终生成电力能源。考虑到当前发电厂中多数情况下都存在燃料燃烧不充分的现象,致使国内乃至全球的化石燃料出现资源浪费。与此同时,在燃料的燃烧过程中,还会产生一些二氧化硫和二氧化碳等气体,会给大气造成破坏,给整个环境带来空气污染。受到设备性能本身的限制,导致国内乃至全球发电厂的整体能量转化率较低,这也是当前绝大多数发电厂所面临的问题。
1.2热能动力系统
热能动力系统指的是将热能转化成机械能,从高温热源位置获取更多热量,在高温高压的环境中发生膨胀,进而将循环废热不断地排除。目前,我国热能系统中的高温热源主要是矿物燃料。煤炭燃烧的热能是一种常见的高温热源,还有很多燃烧矿物原料属于不可再生能源,因而社会各界越来越多地采取节约能源、提升能源利用率的方式制造热能。在热能动力系统运行的过程中,能量转换关系主要是将化学能转化成热能、热能转化成机械能,这一过程会在生态环境中产生大量废热,这就需要相关人员对热能动力系统进行优化和改造,实现资源的充分利用,缓解资源紧张问题,建设节约型经济增长模式。
2对动力系统进行优化和节能改造体现出重要性进行分析
我们通过大量的实践调查分析得出发电厂热能动力系统进行不断的优化和节能应用,能够体现出以下几大重大作用。第一,能够对严峻的环境局面做出有效的缓解,对于生态环境发展能够做出进一步的提升,在此基础上对于整个系统运行速度做出不断的提高。第二,对于可持续发展战略目标能够做到充分的满足,让发电厂获取更高的经济利益的同时还会获得更高的社会价值,这样才会使得发电厂保持住良好的使用寿命,为系统进一步的安全生产运行提供出良好的基础条件。第三,能够对发电厂的各种设备使用性能做出不断的提升,以此能够更好的满足当下环保发展需求,促使发电厂能够走向持有发展的道路上。
3热能与动力工程在发电厂中的具体应用
3.1 降低调压调节的损失
万事都有利有弊,调压调节也包括在内,其主要特点是能够提升机组自身的稳定性与适应能力,还可以有效改善机组给整个发电厂带来的经济效益。与此同时,调压调节还可以为热能动力系统提供有效的实际条件。其不足主要集中在处理高负荷区域时经济成本较高,大型机组蒸汽在动叶栅中工作后,机械能会发生公里转换,在一定程度上会产生蒸汽余速损失、废气损失和爆炸损失。这些损失存在于调压过程中,说明汽轮机组运行的整体经济性在不断降低,造成这些损失的主要原因是由汽轮机组的运行机制决定的,而不是简单的人为失误或系统故障。发电厂的工作人员需要积极研究和探索压力调节的方法,旨在开发出更科学的产品,进一步降低能量损耗。为减少热能和电力工程的损耗,应深入探讨电厂生产过程中的调压损耗等问题,并在实践中应用技术含量较高的新产品,提高电厂热能和电力工程的应用效率。
3.2废烟余热回收利用
在发电厂运行的过程中,往往会产生很多二次能源,如废烟余热。在这种情况下,实现废烟余热的充分利用和回收,具体要做好以下工作:第一,相关人员应在发电厂的锅炉中安装节能器、低压省煤器等装置,这些装置的应用能够优化热能动力系统,有效地缓解内部系统运行过程中产生废烟余热的问题,减少对生态环境的污染,实现废烟余热的有效利用和回收。第二,相关人员需要在发电厂中安装预热装置,利用预热装置回收废烟余热,实现回收废烟余热的循环再利用,减少资源的浪费,创造更多的社会效益。
3.3蒸汽凝结水回收技术
在工业生产中,大量的能源和工业用水被用来产生蒸汽热,实现工业生产过程。然而,在工业生产过程中,蒸汽完成放热过程以后所形成的凝结水通常会被浪费掉,废蒸汽冷凝水占蒸汽总热量的四分之一左右。如果这些高温冷凝水能够充分利用,不但可以降低对工业用水的使用量,而且还能够大大降低燃料能源消耗量。因为用蒸汽凝结水回收技术可以将低压蒸汽替换为蒸汽水余热,借助凝结水余热的作用来实现节能的目标。值得一提的是,压力回水以及背压回水是冷凝水回收的最主要方式。其中,背压回水主要是指借助疏水的背压作为主要动力,实现凝结水及水蒸汽的传输,该类回水方式能够显著提高水蒸汽的利用率,从而达到节能环保的效果。
3.4实现热能动力联产技术应用
电厂想要走向可持续发展的道路,采取了诸多的节能措施应用,但是往往没有取得良好的成效,出现这种现象的主要原因是发电厂只是对单独的设备进行优化改造,而没有对整个的设备进行联合的改造优化完善。而极速的热能动力联产技术应用能够对整个系统做出不断的完善提升,经常使用的是蒸汽动力联产技术和燃气轮机联产技术,只有将这些技术做到进一步的应用,才能够对整个的能耗做出进一步的降低。
3.5加强对现有煤炭的利用
将优质煤炭利用到利润更高的冶金化工行业也是无可厚非的,有时间指责煤炭供应的不公,还不如多花些心思在如何加强对现有的煤炭利用上。如,对燃烧锅炉进行相应改造以提高煤炭的燃烧效率,或者研究如何使劣质煤炭能够在锅炉中稳定燃烧的技术,从而最大程度地利用现有资源。
3.6发电厂热能动力系统的化学补水系统
现阶段,我国发电厂中最常使用的发电机组统一为抽凝式发电机,这些发电机在运行过程中需要对热能动力系统补充水分,补水的主要方式为通过在凝器或除氧器,缓慢注入化学水,在补水过程中,相关人员需要对温度合理控制,一旦补水过程中出现温度过高的情况,相关人员就需要使用喷雾式等其他装置对正凝结器中的水分进行引流,保证补水效果。与此同时,由于补水过程中经常会出现废气,在此种情况下,相关人员就需要采用低压加热器将系统内部留存的废气排除,做到对高温蒸汽量的控制,提高发电厂热能动力系统运行的经济性。
结束语
综上所述,当下社会的不断进步发展,使得人们的生活水平得到了进一步的提升,在电厂热力系统应用和节能系统应用方面进行不断改造,以此保证电厂能够发挥最大化的作用,提升发电厂的能量转化率。保证我们的热力应用系统运行更加安全稳定。
参考文献
[1] 邱少强 . 浅议发电厂热能动力系统优化与节能改造 [J]. 科技展望 ,2016, 26(24):00290-00290.
[2] 罗小荣 . 发电厂热能动力系统优化与节能改造分析 [J]. 计算机产品与流通 2017(11):90.
[3]李泳成.发电厂热能动力系统优化与节能改造分析[J].科技创新与应用,2016(13):137.
[4]杨超.发电厂热能动力系统优化与节能改造探讨[J].科技创新与应用,2018(20):145-146.