检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
PDF下载
基于深度强化学习的交通信号灯控制
陈树德 彭佳汉 高旭 赖晓晨
大连理工大学软件学院
摘要:
交通问题具有非线性,不确定性的特征,传统算法往往难以取得较好的效果。深度学习模型在处理非线性、时序性的数据上拥有良好的表现。由此,提出一种基于深度强化学习的信号灯控制系统。该系统包括了几个部分:1)使用实时的交通数据或仿真环境产生数据;2)通过LSTM循环神经网络预测未来的交通信息;3)使用DDPG深度强化学习模型进行决策。在多个数据集上的实验验证算法的优越性及泛化能力。
关键词:
预测交通状态;优化信号灯时间;深度强化学习;循环神经网络
DOI:
基金资助:
文章地址:
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2