基于动态RBF神经网络的广义电力负荷建模
摘要: 针对新形势下分布式电源对综合负荷特性的影响,提出一种基于动态径向基函数(radical basis function,RBF)神经网络的广义电力负荷建模新方法。利用动态RBF神经网络描述综合负荷功率的动态微分变化过程,可以深度揭示广义电力负荷的动态特性。利用状态估计误差对神经网络的权值进行动态更新,并对不满足持续性激励条件的神经元的权值进行限制,使所建立的动态RBF神经网络模型参数理论上可以收敛至最优值。分别应用仿真平台和实际系统数据进行测试,结果表明所提方法的有效性。
关键词:
广义电力负荷;动态建模;动态RBF神经网络;收敛性;
广义电力负荷;动态建模;动态RBF神经网络;收敛性