一种群体智能算法——狮群算法
1.广州大学华软软件学院游戏系;2.广西民族大学信息科学与工程学院
摘要: 基于狮群中狮王、母狮及幼狮的自然分工,模拟狮王守护、母狮捕猎、幼狮跟随3种群智能行为,提出群体智能算法——狮群算法.算法中不同种类的狮子位置更新方式不同.遵循自然界生物"适者生存"的竞争法则,狮王守护领土,优先享用食物,母狮合作捕猎,幼狮分为学习捕猎、饥饿进食和成年被驱逐.狮子位置更新方式的多样化保证算法快速收敛,不易陷入局部最优.最后,将算法应用于6个标准测试函数优化问题,并对比粒子群算法、骨干粒子群算法,测试结果表明,文中算法收敛速度较快,精度较高,能较好地获得全局最优解.
关键词:
狮群算法(LSO);粒子群算法(PSO);函数优化;群体智能;
狮群算法(LSO);粒子群算法(PSO);函数优化;群体智能