检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
PDF下载
基于离散选择模型的推荐系统改进算法
刘乾超
上海交通大学安泰与经济管理学院
摘要:
准确地预估用户的点击率,并根据该概率对商品排序以供用户选择在推荐系统领域有着重要的意义。推荐系统中常用的因子分解机等机器学习模型一般只考虑用户选择单个商品的概率,忽略了候选商品之间的相互影响,离散选择模型则考虑将商品候选集作为整体进行考虑。提出了使用深度学习模型来改进离散选择模型,模型使用相对特征层、注意力机制等网络结构帮助深度学习模型进行不同商品间的特征比较,研究结果表明引入离散选择模型的深度学习模型表现优于梯度提升决策树、因子分解机等模型。
关键词:
推荐系统;离散选择模型;注意力机制
DOI:
基金资助:
文章地址:
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2