PDF下载
采用Stack-Tree LSTM的汉语一体化依存分析模型

刘航 刘明童 张玉洁 徐金安 陈钰枫

北京交通大学计算机与信息技术学院

摘要: 在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在。目前无论基于特征工程的方法还是基于深度学习的方法尚无法充分利用分析过程中依存子树的完整信息,而依存子树作为中间结果的主要成分对三个任务的后续分析具有重要的指导意义。该文在基于转移的依存分析框架下,提出Stack-Tree LSTM依存子树编码方法,通过对分析栈中所有依存子树的有效建模,获取任意时刻的依存子树的完整信息作为特征参与转移动作决策。利用该编码方式提出词性特征使用方法,融合N-gram特征构建汉语一体化依存分析神经网络模型。最后在宾州汉语树库上进行了验证实验,并与已有方法进行了比较。实验结果显示:该文提出的模型在分词、词性标注和依存分析任务上的性能非常接近特征工程最好的结果,并且均超过已有的一体化依存分析神经网络模型。
关键词: 中文分词、词性标注和依存分析;依存子树;神经网络
DOI:
基金资助:
文章地址: