PDF下载
基于QU-NNs的阅读理解描述类问题的解答

谭红叶1,2 刘蓓1 王元龙1

1.山西大学计算机与信息技术学院;2.山西大学计算智能与中文信息处理教育部重点实验室

摘要: 机器阅读理解是自然语言处理(NLP)领域的一个研究热点,目前大部分的研究是针对答案简短的问题,而具有长答案的问题,如描述类问题是现实世界无法避免的,因此有必要对该类问题进行研究。该文采用QU-NNs模型对阅读理解中描述类问题的解答进行了探索,其框架为嵌入层、编码层、交互层、预测层和答案后处理层。由于该类问题语义概括程度高,所以对问题的理解尤为重要,该文在模型的嵌入层和交互层中分别融入了问题类型和问题主题、问题焦点这三种问题特征,其中问题类型通过卷积神经网络进行识别,问题主题和问题焦点通过句法分析获得,同时采用启发式方法对答案中的噪音和冗余信息进行了识别。在相关数据集上对QU-NNs(Question UnderstandingNeural Networks)模型进行了实验,实验表明加入问题特征和删除无关信息可使结果提高2%~10%。
关键词: 阅读理解;描述类问题;问题理解;神经网络
DOI:
基金资助:
文章地址: