中文研究

中文研究

《中文研究》系开放获取期刊,本刊旨在为从事语言文字研究的教学、科研工作者及语言文字爱好者提供优秀的精神产品。以传承文明,传承学术为使命,提倡学术创新,反映国内外本学科的最新研究成果。以繁荣人文社会科学研究,服务学科建设与发展,提升社会精神文明生态为办刊方针。
ISSN: 3007-9896
qikan8@ccnpub.com
(邮箱投稿时,请说明投稿期刊名)

《中文研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊所刊发的文章将授权中国知网或维普、万方等数据库检索,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。

基于大规模语料库的介词结构搭配库构建 下载:87 浏览:561
摘要:
语言知识可帮助计算机正确地处理自然语言,介词结构知识作为语言知识的一种,对自然语言处理和语言教学研究有很重要的意义。该文基于大规模语料库构建了高质量的介词结构搭配库。首先在前人研究的基础上,对介词进行归类并建立了介词搭配知识体系,而后设计并实现了从大数据中获取介词结构搭配知识的规则,最后对抽取结果及其数据规模进行了统计和评估,主要目的是通过形式手段获取高质量的介词结构搭配,同时也为自然语言处理和语言学基础研究及应用提供数据支持。
一个面向中文古诗词理解难易度的人工标注数据集 下载:46 浏览:459
摘要:
向读者推荐阅读难度合适的古诗词有助于提升读者的诗词鉴赏能力。现阶段,围绕古诗词可读性自动化分析的相关研究的突出局限之一是缺乏大规模高质量的数据集。针对该问题,该文研究面向古诗词可读性自动化分析的数据集构建。该文作者对外开放了包含1 915篇古诗词的标注阅读理解难度的数据集(1)。该文首先将数据集划分成易中难三级,构建数据集APRD;然后进一步细化标注,构建六级分类数据集APRD+。抽取教材中的诗词组成标准集,以年级为标准难度级别,计算标准集与APRD、APRD+之间的Spearman相关性,Spearman系数分别为0.786与0.804,表明该数据集标记结果与标准集具有较高一致性。该文提取了字频、注释数等古诗词特征,采用SVM、随机森林等算法进行了初步古诗词阅读理解难易度分类测试。文内提出的古诗词可读性数据集与实验结果可作为后续研究的测试基准。
汉语中介语的依存句法标注规范及标注实践 下载:55 浏览:405
摘要:
汉语中介语是伴随着汉语国际教育产生的,随着汉语学习在全球的不断开展,汉语中介语的规模不断增长,由于这些语料在语言使用上有其独特性,使得中介语成为语言信息处理和智能语言辅助学习的独特资源。依存语法分析是语言信息处理的重要步骤,英语中介语的依存语法标注语料已经有很好的应用,目前汉语中介语语料库对句法的关注度较低,缺乏一个充分考虑汉语中介语特点的依存句法标注规范。该文着眼于汉语中介语的依存句法标注语料库的建构,探讨依存标注规范,在充分借鉴国际通用依存标注体系(Universal Dependencies)的基础上,制定了汉语中介语的依存标注规范,并进行了标注实践,形成了一个包括汉语教学语法点的中介语依存语料库。
基于地理空间数据的知识图谱构建技术研究 下载:20 浏览:298
摘要:
随着3S技术迅猛发展,地理空间数据呈现出爆发式增长趋势,基于地理空间数据构建知识图谱,实现数据到空间知识的转换成为亟待解决的科学问题。针对通用知识图谱仅以属性和语义关系表示空间知识,以及空间关系相对缺失等问题,该文首先描述了空间关系的表示方法;其次,提出了基于空间关系的知识图谱构建技术流程,重点研究空间关系抽取和表示以及多源地理空间数据融合的问题,实现了地理知识图谱构建;最后,论述知识图谱在地理空间领域的应用方向。该研究可以促进地理空间数据和语义网技术的整合,实现网络文本空间化、空间数据语义化,进一步提高智能化服务水平。
面向临床科研的医疗事件模型与开放数据集合构建 下载:53 浏览:302
摘要:
基于电子病历观察性数据的真实世界研究成为目前临床科研的热点。然而关系数据模型无法直接支撑起科研应用中医疗事件的时序关系表示以及知识融合的查询需求。针对上述问题,该文提出了一种新的基于RDF的医疗观察性数据表示模型,该模型可以清晰地表示临床检查、诊断、治疗等多种事件类型以及事件的时序关系。对来源于医院的电子病历数据,经过数据预处理、数据模式转换、时序关系构建以及知识融合4个步骤建立事件图谱。具体地,使用三家上海三甲医院的电子病历数据,构建了包括3个专科、173 395个医疗事件以及501 335个事件时序关系的医疗数据集,并融合了5 313个中文医疗知识库概念。基于临床文献与医生科研需求,该文根据公共卫生流行病学的病因研究、治疗研究等类型,分别提供了针对本数据集的40个问题示例,并将其中的部分问题与传统关系数据库在查询的构建与执行方面进行了实验比对,论证了该事件图谱的优越性。该数据集遵循开放链接标准,在OpenKG上发布并提供了在线访问的SPARQL站点,链接为https://peg.ecustnlplab.com/dataset.html。
[1/1]

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2