电厂化学水处理的特点与技术工艺分析
DOI: 10.12721/ccn.2021.157036, PDF, 下载: 182  浏览: 2474 
作者: 陈红
作者单位: 宿州皖能环保发电公司,安徽宿州,234000
关键词: 电力化学水;运行问题;创新
摘要: 现阶段从电力供应的方式及结构上来看,其主要模式是通过固定热源,催生大量的蒸汽带动燃汽轮机,以此来推动转子与定子之间发生相互运动从而产生电力能源。这也促使化学水成为形成电力资源的重要媒介。但是因其独特的水源性质、复杂的运行体系以及长期不间断的实践作业等条件出现,在电力系统作业量持续扩大的阶段内,为化学水顺利运行带来了严峻挑战。如何能够避免给水工作期间,提升工作效率和质量,是当下电力供应保障部门所面临的重要问题之一。

引言:由于化学水运行当中的特殊性,对于提高整体电力保障效益产生了重要促进作用,特别是在能源需求紧张的时代表现尤为突出。为此应当从管理、工艺、技术、人员四个方面进行调整,完善管理体系、严守工艺流程、智能化升级、提升职业素养,进而推动实现电厂化学水处理效益最大化。

1.现阶段电厂化学水运行的主要内容

1.1电厂化学水处理运行的主要内容

正如上述中所提到的那样,电力产生的本质是通过燃气锅炉进行能量传递,在相互力的作用下在固定区域内形成电力磁场,形成电流而多数电流汇集在一起就成为了通常人们所使用的电力能源。而在此过程中能量的传递依靠高压或者超高压环境下的水蒸气进行传递,但是在自然状态环境下静态水存在较多的杂质,包括二氧化碳、钠、镁、碳酸根等杂质离子,水指标无法达到电厂锅炉的使用指标,需要予以剔除成为除盐水,才能作为传动介质被应用在动能转化当中。实现汽化促使能够转变为水蒸气,从而推动汽轮机转动。

1.2化学水运行的基本技术工艺流程

按照自然水从外界进入到电厂到最终实现能量转变这一过程,化学水的处理运行技术工艺流程主要被分为两个阶段:(1)取水阶段,就是将外界特定水源地进行取水操作,通过专用管道引入到电厂内的储水罐进行封存。并在此时对水体进行去除杂质、去除多余离子等操作,避免水体微量物质与相关设施发生化学反应;(2)输送阶段,在完成初期加药作业后,通过保安过滤器、超滤、反渗透、EDI等设备进行二次过滤处理,待任务结束后加入氨水调节pH后直接被输送到锅炉主厂房内。其重点在于对水源的选择、杂质的清除以及水体状况的实施监控。

2.电厂化学水运行处理中存在的主要问题

2.1缺乏对运行设施的维护与保养

当下化学水处理所涉及使用到的设施包括水箱、水泵、加药器、管网、计量泵等。然而在实践作业中化学水处理过程表现出较长的持续性,为确保锅炉稳定运行,对于水源供应将会采取接连不断形式。任何运行环节出现的短暂停滞都将对整个体系运行造成阻碍。导致部分作业人员没有按照规定的期限,对管道、储水罐、加药器等设备进行定期维护与保养,致使沉积物总量逐渐增加。

2.2未按照规定的技术标准进行作业

以清除锅炉内结垢为例子。结垢的产生是水体与锅炉内壁发生碰撞接触,水源内的微量物质与金属发生反应形成了钙化沉淀物。如未对其锅炉内部及时进行结垢清理则会爆管造成设备停机,严重影响发电设备运行。然而部分业务人员为了加快清洁速度,提高清洁效率。往往会加大对清洁药剂的投送剂量。虽然在一定程度上加快了清洁进度疏通了管网,但大剂量的药物投送容易造成清洁过度,多余的药物会在分化完表面钙化物质以后,继续与裸露出来的管壁发生新的化学反应,产生出新的沉淀物在水流冲击下,对其他区域造成新的腐蚀和结垢。

2.3缺乏对化学水体系运行的监控

按照工艺流程走势来看,化学水从产生之初到最终发挥运行效益,其水性质状态发生了无数次的转化,水体从液态到汽态转变、内部物质从单一到复杂、反应种类进一步增加,任何一次形态的转变都会对化学水结构形成限制条件,而不同转变都会对蒸汽锅炉工作效率产生重要的影响[1]。

3.创新优化电厂化学水运行模式的主要措施

3.1PLC总体操控体系

鉴于PLC总体操控体系当中,最常见的就是矢量星型网络结构,1000MB速度的TCP光缆经过以太网从而完成数据传递和信息传导的过程。针对其中的控制室,需要挑选三名专业的工作人员,分别对设备进行操作,只有这样才可以通过以太网来监控网络内部的任意一个系统的工作操作。一号机和二号机在进行组水凝精的过程中需要在处理的控制室内分别设置一套完整的操作人员站点,不仅如此,还需要在处理的站点将化学水和光纤结合,这样就可以融合控制系统网络。矢量以太网系统是网络连接所使用的必须装备,数据库中枢被中枢交换机联网操作员控制系统,同时可以利用cis和网关以及全程辅助流水线控制网络的连接。锅炉补给水操控点和其他机组的凝结水处的控制中枢与化学水操控系统网络设立交换网络的装备。与此同时,还要在锅炉补给的水车间内部设置关于化学水控制系统的集中控制室。

3.2强化协调化学水的技术工艺流程

以EDI制水技术应用为例子,该技术的诞生在电厂化学水运行体系当中还处在探索实践阶段,其工作原理和操作方式与传统化学水生产模式发生变化,其反应效率和产生品质量表现出良好的状态,逐步得到了使用机构的广泛好评。技术原理是以电渗透与离子交换技术进行优化重组,通过阴阳离子表面交换膜与离子本身产生渗透作用,并在直流电场的影响下实现离子的定向分离,将化学水内特定杂质进行处理。过程主要分为几个步骤:第一,通过在RO膜处加注水源通过EDI装置后进入到化学水储藏室;第二,水源内为过滤掉的离子通过渗透作用被吸附在RO膜表面;第三,增加直流电在电能的驱动下,提高离子运动的速度,从而提炼高纯度的水源并应用到电厂内化学水作业当中[2]。

3.3锅炉补给水处理

锅炉补给水中进行水处理工艺的预处理操作的根本目的就是在于除去水中的小颗粒悬浮物、微生物、胶体、活性氯和有机污染物。预处理的基本操作就是对水进行混凝,然后静止澄清和过滤,将出水的浊度降到一定范围,保证水品的质量。在进行预处理时,操作人员还可以根据需要,判断是否进行加氯杀菌的操作;当所剩的氯含量过高时,还可以用还原剂或者是通过吸附脱氯一级盐过程来除去氯。现如今,常用的精除盐系统有电渗析、混合离子交换器、连续电再生除盐技术和二级反渗透等系统。混合离子交换器就是其中最为成熟的精除盐技术,这种技术不仅出水的水品质量高,而且出水所含的二氧化硅小于20µg/l,但还是存在不少的缺点,例如:再生操作过于复杂、树脂的消耗过高、排放大量的酸碱废水、树脂交换容量的利用率低等。反渗透的脱盐率虽然很高,可高达95%以上,但是反渗透技术对二氧化硅的脱除率还是比较差的。而连续电再生除盐技术是最近几年才发展起来的工艺,它是将离子交换除盐和电渗析组合在一起的精脱盐技术,结合了两种技术的精华[3]。

结论:

简而言之,社会变革速度很快,对于电力能源的使用与需求数量陡然增加。提高了对电力供应保障稳定性与效率性的标准和要求。然而,受技术工艺、环境资源等方面因素的局限性,促使电厂在实施化学水处理操作中存在诸多问题,影响了整个电力系统的正常运转。文章结合现行电力供水系统现状,提出从科技、设施、人员等环节实施优化升级,逐步形成一套实践性与可行性较强的新措施,确保电力系统运行持续性与稳定性。

参考文献:

[1]郝杨.电厂化学水处理中全膜分离技术的应用研究[J].中国化工贸易,20120,25(30):140-143.

[2]郭素珍,段建军.火力发电厂化学水处理的重要性探讨[J].建筑工程技术与设计,2018,38(25):441-446.

[3]毛棋斌.电厂化学水处理系统中PLC控制的应用[J].化工设计通讯,2018,44(9):213-225.