检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
融合反问特征的卷积神经网络的中文反问句识别
下载:
23
浏览:
359
文治1
李旸1
王素格1,2
廖健1
陈鑫1
《当代中文学刊》
2019年2期
摘要:
反问是一种带有强烈情感色彩的表达方式,对其进行自动识别将提升隐式情感分析的整体效率。针对汉语反问句识别问题,该文分析了反问句的句式特点,将反问句的句式结构融入到卷积神级网络的构建中,提出一种融合句式结构的卷积神经网络的反问句识别方法。首先利用置信度大于70%的反问句的特征词、序列模式,对大规模未被标注的微博语料进行初步筛选,获取大量伪反问句。然后通过多个卷积核分别对句子的词向量和反问句的特征进行抽取,获取句子语义特征和反问词特征,将两者共同作用生成句子的表示。最后利用softmax分类器实现句子的分类。实验结果表明,利用该方法对微博中反问句的识别准确率、召回率和F1值分别达到了89.5%、84.2%和86.7%。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享