请选择 目标期刊

基于改进的字典学习与稀疏表示的人脸表情识别 下载:56 浏览:454

黎明1,2 彭秀姣1 王艳2 《建模与系统仿真》 2018年10期

摘要:
为克服人脸表情图像识别过程中光照、遮挡等带来的影响,减少稀疏表示分类的时间,提出一种融合HOG特征和改进KC-FDDL(K-means Cluster and Fisher Discrimination Dictionary Learning)字典学习稀疏表示的人脸表情识别算法。对归一化后的表情图像提取HOG特征构成训练集,对训练集进行改进的K-均值聚类的Fisher判别字典学习,利用残差加权的稀疏表示进行表情分类。Cohn-Kanade数据库上的实验结果表明,该算法相比其他的人脸表情分类方法具有耗时低、相似表情分类更准确的优势。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享