请选择 目标期刊

基于生成对抗网络的控辩焦点识别 下载:28 浏览:333

杨亮1 周逢清1 张琍2 毛国庆3 易斌1 林鸿飞1 《中文研究》 2020年1期

摘要:
近年来,随着深度学习技术的不断发展,自然语言处理作为人工智能的一个重要分支,在许多垂直领域有了广泛的应用,如司法、教育、医疗等。在司法领域的庭审过程中,控辩双方往往围绕案件的争议焦点持有不同观点,而该焦点也是影响案件最终判决和量刑的关键所在,该文旨在识别并生成电子卷宗中的控辩焦点。由于控辩焦点的构成大多依赖对案情文本的分析概括,受此启发该文尝试将文本摘要的思想迁移到该任务中,结合生成对抗网络构建控辩焦点的生成模型,进而获得案件的控辩焦点。在裁判文书网的真实司法数据的基础上,开展了相关的实验。实验结果显示,所提出的模型对控辩焦点的识别精度有了一定幅度的提升。因此,该文对检察机关办案人员的庭前预案及案件审理有着一定的辅助作用与应用价值。

基于细粒度词表示的命名实体识别研究 下载:26 浏览:333

林广和1 张绍武1,2 林鸿飞1 《中文研究》 2018年12期

摘要:
命名实体识别(NER)是自然语言处理中的一项基础任务,其性能的优劣极大地影响着关系抽取、语义角色标注等后续任务。传统的统计模型特征设计难度大、领域适应性差,一些神经网络模型则忽略了词本身所具有的形态学信息。针对上述问题,该文构建了一种基于细粒度词表示的端到端模型(Finger-BiLSTM-CRF)来进行命名实体识别任务。该文首先提出一种基于注意力机制的字符级词表示模型Finger来融合形态学信息和单词的字符信息,然后将Finger与BiLSTM-CRF模型联合进行实体识别,最终该方法以端到端、无任何特征工程的方式在CoNLL 2003数据集上取得了F1为91.09%的结果。实验表明,该文设计的Finger模型显著提升NER系统的召回率,从而使得模型的识别能力显著提升。

基于细粒度词表示的命名实体识别研究 下载:43 浏览:247

林广和1 张绍武1,2 林鸿飞1 《当代中文学刊》 2018年12期

摘要:
命名实体识别(NER)是自然语言处理中的一项基础任务,其性能的优劣极大地影响着关系抽取、语义角色标注等后续任务。传统的统计模型特征设计难度大、领域适应性差,一些神经网络模型则忽略了词本身所具有的形态学信息。针对上述问题,该文构建了一种基于细粒度词表示的端到端模型(Finger-BiLSTM-CRF)来进行命名实体识别任务。该文首先提出一种基于注意力机制的字符级词表示模型Finger来融合形态学信息和单词的字符信息,然后将Finger与BiLSTM-CRF模型联合进行实体识别,最终该方法以端到端、无任何特征工程的方式在CoNLL 2003数据集上取得了F1为91.09%的结果。实验表明,该文设计的Finger模型显著提升NER系统的召回率,从而使得模型的识别能力显著提升。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享