检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
神经机器翻译中英语单词及其大小写联合预测模型
下载:
42
浏览:
357
张楠1
李响2,3
靳晓宁1
陈伟4
《当代中文学刊》
2019年9期
摘要:
英文中单词有大小写之分,如果使用不规范,会降低语句的可读性,甚至造成语义上的根本变化。当前的机器翻译处理流程一般先翻译生成小写的英文译文,再采用独立的大小写恢复工具进行还原,这种方式步骤繁琐且没有考虑上下文信息。另一种方式是抽取包含大小写的词表,但这种方式扩大了词表,增加了模型参数。该文提出了一种在神经机器翻译训练中联合预测英语单词及其大小写属性的方法,在同一个解码器输出层分别预测单词及其大小写属性,预测大小写时充分考虑源端语料和目标端语料上下文信息。该方法不仅减小了词表的大小和模型参数,译文的质量也得到提升。在WMT 2017汉英新闻翻译任务测试集上,相比基线方法,该方法在大小写敏感和大小写不敏感两个评价指标上分别提高0.97BLEU和1.01BLEU,改善了神经机器翻译模型的性能。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享