检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于BiLSTM-CRF模型的汉语否定信息识别
下载:
21
浏览:
451
朱晋1
怀丽波1
崔荣一1
尹慧2
《当代中文学刊》
2018年12期
摘要:
该文提出了基于小波分析的文本特征提取方法,对传统TF-IDF向量空间模型下的特征向量进行了该文的小波变换、逆小波变换。使用KNN分类方法检验这两空间下的文本分类准确率。实验结果表明,该文的小波变换方法在减少了TF-IDF向量空间模型近一半的维度下在各种实验条件中都能和向量空间模型保持一致的分类准确率;该文的逆小波变换方法在大幅度降低TF-IDF向量空间模型维度的基础上,同实验中其他特征提取方法相比,在特定条件下有着卓越的特定文本类别分类优势,这也在一定程度上检验了压缩感知理论的正确合理性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享