检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
一种基于卷积神经网络的快速说话人识别方法
下载:
21
浏览:
209
蔡倩
高勇
《无线电研究》
2020年12期
摘要:
提出了一种基于Gammatone滤波器倒谱系数(Gammatone Frequency Cepstral-Coefficients,GFCC)动态组合参数的卷积神经网络(Convolutional Neural Networks,CNN)结构来实现快速说话人识别的方法。提取语音样本的GFCC及其一阶差分和二阶差分系数作为代表语音的特征参数,对特征参数进行归一化处理,将得到的统计特征构造成CNN的输入形式。实验结果表明,与通用背景模型(Gaussian Mixture Model-Universal Background Model,GMM-UBM)相比,提出的模型方法学习速度更快,在提高识别率的同时减少了训练时间和识别时间。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享