请选择 目标期刊

缓解数据稀疏问题的协同过滤混合填充算法 下载:59 浏览:378

任永功 王思雨 张志鹏 《人工智能研究》 2020年3期

摘要:
现实评分矩阵非常稀疏,基于用户的协同过滤无法为目标用户提供高精度的满意推荐.基于此种情况,文中提出协同过滤混合填充算法,缓解数据稀疏问题.从物品角度出发,根据相似物品的评分信息填充稀疏矩阵.同时从用户角度出发,利用填充后的矩阵计算目标用户的邻近用户.选取共同评分数量最多的物品以进一步填充矩阵.在两个真实数据集上的实验表明,本文算法在无需额外复杂信息的条件下,有效提高新用户推荐的精确度,缓解数据稀疏性问题.

融合关系挖掘与协同过滤的物品冷启动推荐算法 下载:67 浏览:381

任永功 石佳鑫 张志鹏 《人工智能研究》 2020年1期

摘要:
针对新物品缺乏(非完全冷启动)或没有(完全冷启动)评分信息,协同过滤无法为新物品进行个性化推荐的问题,文中提出融合关系挖掘与协同过滤的推荐算法.首先,利用关系挖掘提取物品关系特征,根据属性之间的多种二元关系构建关系属性,丰富可用属性信息.然后,提出基于关系挖掘的近邻选取方法,增加邻近物品的多样性.最后,融合协同过滤方法,同时解决完全和非完全新物品冷启动问题,实现新物品的个性化推荐.在两个真实数据集上的实验表明,文中方法可以系统解决推荐系统中新物品的冷启动问题.

基于时间相关度和覆盖权重的协同过滤推荐算法 下载:73 浏览:396

张志鹏1 张尧2 任永功1 《人工智能研究》 2019年10期

摘要:
基于物品的协同过滤(IBCF)在计算相似度和预测评分时为所有物品分配相同的权重,提供的推荐往往不能同时具有良好的预测精度和分类精度.因此,文中提出基于时间相关度和覆盖权重的协同过滤算法(TCWCF).将时间相关度函数应用于物品间的相似度计算,提高推荐的预测精度.同时构建覆盖度函数,融入预测评分阶段,提高推荐的分类精度.在MovieLens数据集上的实验表明,TCWCF性能优于IBCF和其它相关算法,可以同时为目标用户提供具有良好预测精度和分类精度的满意推荐.

基于语言值格蕴涵代数的偏好顺序结构评估决策方法 下载:82 浏览:481

邹丽1 罗思元2 史园园2 任永功1 《人工智能研究》 2018年7期

摘要:
针对具有可比性和不可比性语言值信息的决策问题,提出基于语言值格蕴涵代数(LV(n×2))的多属性决策方法.讨论Ln×2上的语言值评价矩阵及其性质,提出LV(n×2)上的优先函数和格值程度差,充分考虑属性值差距信息,将格值程度差应用到择优排序上.通过语言值向量,建立语言值向量合成矩阵,处理决策问题中的多专家多属性信息.引入语言值评价矩阵加权聚合算子对语言值评价矩阵进行聚合,利用偏好顺序结构评估(PROMETHEE)决策方法的非补偿性,构建基于语言值格蕴涵代数的PROMETHEE决策模型,并通过网络商品评价实例说明文中方法的有效性和实用性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享