检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于多特征Bi-LSTM-CRF的影评人名识别研究
下载:
48
浏览:
381
禤镇宇1
蒋盛益1,2
张礼明1
包睿1
《当代中文学刊》
2019年8期
摘要:
近年来电影行业蓬勃发展,相关的信息抽取和分析技术日益受到行业内的重视,其中对电影主创人物的分析尤为重要。而电影评论作为观影群体的主要反馈信息,具有重要的分析价值。如何从影评中自动抽取主创人名成为重要的基础工作。然而评论中观众对人物的称谓方式多样复杂,而且新电影的影评中往往存在大量人名未登录词,传统方法难以有效识别。针对影评的这些特点,该文提出一种基于多特征Bi-LSTM-CRF的影评人名识别方法。该方法通过利用外部人名语料和未标注影评提取字符级的特征,并采用Bi-LSTM-CRF模型进行人名字符序列标注。实验结果表明,该方法能够有效识别影评中的复杂称谓和人名未登录词,从而有效地抽取影评中的人名实体。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享