请选择 目标期刊

基于原型网络的细粒度实体分类方法 下载:48 浏览:352

任权 《中文研究》 2020年8期

摘要:
细粒度实体分类任务作为命名实体识别任务的扩展,其目的是根据指称及其上下文,发掘实体更细粒度的类别含义。由于细粒度实体语料的标注代价较大,标注错误率较高,因此该文研究了在少量样本情况下的细粒度实体分类方法。该文首先提出了一种特征提取模型,能够分别从单词层面以及字符层面提取实体信息,随后结合原型网络将多标签分类任务转化为单标签分类任务,通过缩小空间中同类样本与原型的距离实现分类。该文使用少样本学习以及零样本学习两种设置在公开数据集FIGER(GOLD)上进行了实验,在少样本学习的设置下,较基线模型在三个指标中均有提升,其中macro-F1的提升最大,为2.4%。

用于文本分类的均值原型网络 下载:34 浏览:362

线岩团1 相艳2 余正涛1 文永华1王红斌2 张亚飞1 《当代中文学刊》 2020年10期

摘要:
文本分类是自然语言处理的基本任务之一。该文在原型网络基础上,提出了按时序移动平均方式集成历史原型向量的均值原型网络,并将均值原型网络与循环神经网络相结合,提出了一种新的文本分类模型。该模型利用单层循环神经网络学习文本的向量表示,通过均值原型网络学习文本类别的向量表示,并利用文本向量与原型向量的距离训练模型并预测文本类别。与己有的神经网络文本分类方法相比,模型在训练和预测过程中有效利用了样本间的特征相似关系,并具有网络深度浅、参数少的特点。该方法在多个公开的文本分类数据集上取得了最好的分类准确率。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享