请选择 目标期刊

基于双向LSTM与CRF融合模型的否定聚焦点识别 下载:43 浏览:470

沈龙骧 邹博伟 叶静 周国栋 朱巧明 《当代中文学刊》 2019年3期

摘要:
否定表达作为自然语言文本中常见的语言现象,对自然语言处理上层应用,如情感分析、信息抽取等,具有十分重要的意义。否定聚焦点识别任务是更细粒度的否定语义分析,其旨在识别出句子中被否定词修饰和强调的文本片段。该文将该任务作为序列标注问题,提出了一种基于双向长短期记忆网络结合条件随机场(BiLSTMCRF)的否定聚焦点识别模型,其中,BiLSTM网络能够充分利用上下文信息并抓取全局特征,CRF层能够有效学习输出标签之间的前后依赖关系。在*SEM2012评测任务数据集上的实验结果表明,基于BiLSTM-CRF的否定聚焦点识别方法的准确率(accuracy)达到69.58%,与目前最好的系统相比,性能提升了2.44%。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享