检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
卷积神经网络在图像识别中的应用
下载:
58
浏览:
456
圣文顺 孙艳文
《软件工程研究》
2019年5期
摘要:
随着医学成像技术的不断发展,病理识别在医学诊断过程中的作用越来越重要。人工智能领域的机器学习可以帮助完成医学图像诊断的自动识别,数字化地辅助医学诊断过程,同时降低医务工作者的工作量。卷积神经网络(CNN)是近年发展起来的一种非常有效的机器学习方法,属于深度学习的范畴,它能够完整地模拟人类的图像识别过程,并且已经在图像识别领域取得了优异的成绩。本文将卷积神经网络应用于病理图像的识别中,同时对病理图片进行了采集、整理和智能学习,完成并分析了算法对比实验,最终实现了对病理图像的优化识别,提高了病理图像的识别率,验证了算法的有效性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享