检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于改进的HOG和LBP算法的人脸识别方法研究
下载:
15
浏览:
227
姚立平 潘中良
《光电子进展》
2020年2期
摘要:
人脸识别技术易受光照、表情等因素影响,为充分提取人脸特征信息,提出了融合改进的局部二值模式(LBP)和梯度方向直方图(HOG)方法提取人脸图形纹理、细节特征,利用列方向压缩的2DPCA+PCA算法对人脸的特征空间进行降维处理,使用2DPCA算法降低了特征维度,解决了仅仅使用PCA方法,由于人脸图像特征维度高而造成求解模型复杂的问题,降低了计算规模,提高了运算速度。最后,使用ORL和Yale人脸数据库进行实验。结果表明,基于改进的LBP和HOG融合的特征提取具有一定的互补性,与其它的识别算法相比,该改进的算法识别率有了较大的提高,鲁棒性更强。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享