请选择 目标期刊

时空嵌入式生成对抗网络的地点预测方法 下载:97 浏览:492

孔德江 汤斯亮 吴飞 《人工智能研究》 2018年1期

摘要:
定位技术的广泛使用可以积累大量的用户轨迹信息,为挖掘用户的行为轨迹提供便利.地点预测任务是众多基于位置服务的基础,学者们更关注如何有效利用这些轨迹数据进行地点预测.已有的方法或关注对长期模式(数天或数月)的预测,或致力于实时轨迹预测.文中研究的问题基于上述两者之间,即对弱实时条件下(数分钟或数小时)用户下一步的访问行为进行预测.为此,提出时空嵌入式的生成对抗网络模型(ST-GAN),在序列生成对抗网络的基础上,提出时空嵌入式长短时记忆生成模型(ST-LSTM)和时空嵌入式卷积神经网络判别模型(ST-CNN).ST-LSTM利用时空信息引导LSTM训练门机制,缓解数据的稀疏性.ST-CNN利用时空信息增强判别真伪访问序列的能力.此外,ST-GAN的训练优化机制使模型可以生成更多逼近真实的数据以引导模型学习,从而得到更好的预测效果.最后在真实的轨迹数据集上的实验验证ST-GAN的有效性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享