时空嵌入式生成对抗网络的地点预测方法
孔德江 汤斯亮 吴飞
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

孔德江 汤斯亮 吴飞,. 时空嵌入式生成对抗网络的地点预测方法[J]. 人工智能研究,2018.1. DOI:.
摘要:
定位技术的广泛使用可以积累大量的用户轨迹信息,为挖掘用户的行为轨迹提供便利.地点预测任务是众多基于位置服务的基础,学者们更关注如何有效利用这些轨迹数据进行地点预测.已有的方法或关注对长期模式(数天或数月)的预测,或致力于实时轨迹预测.文中研究的问题基于上述两者之间,即对弱实时条件下(数分钟或数小时)用户下一步的访问行为进行预测.为此,提出时空嵌入式的生成对抗网络模型(ST-GAN),在序列生成对抗网络的基础上,提出时空嵌入式长短时记忆生成模型(ST-LSTM)和时空嵌入式卷积神经网络判别模型(ST-CNN).ST-LSTM利用时空信息引导LSTM训练门机制,缓解数据的稀疏性.ST-CNN利用时空信息增强判别真伪访问序列的能力.此外,ST-GAN的训练优化机制使模型可以生成更多逼近真实的数据以引导模型学习,从而得到更好的预测效果.最后在真实的轨迹数据集上的实验验证ST-GAN的有效性.
关键词: 地点预测;时空嵌入;长短时记忆模型;卷积神经网络;生成对抗网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。