检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于深度神经网络的诗词检索
下载:
24
浏览:
244
梁健楠1,2,3
孙茂松1,2,3
矣晓沅1,2,3
《中文研究》
2020年8期
摘要:
中国古典诗词是中国古典文学的代表之一,是中华传统文化的宝藏,源远流长。中国古典诗词研究是自然语言处理方向的一项重要且富有意义的工作。随着人工智能的发展,人工神经网络在图像、文本等领域得到广泛的应用,取得了显著的突破,给人工智能与中国古典诗词相结合提供了新的思路和方法。让机器去理解中国古典诗词的韵律和意境是一项极具挑战的工作,其中,通过研究诗词的相似性来提升机器对诗词的理解这一研究课题被赋予了更为重要的意义。诗词检索是对诗词内容做对比,查找出在语义和意境上相接近的诗词,这要求对整首诗词的内容和意境有深入的理解。该文模型以数十万首古诗作为基础,利用循环神经网络(RNN)自动学习古诗句的语义表示,并设计了多种方法自动计算两首诗之间的关联性,以此计算两首诗词之间的语义距离,实现诗词的推荐。自动评测和人工评测的实验结果都表明,该文模型能够生成质量较好的诗词检索结果。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享