请选择 目标期刊
最新录用
一种基于循环神经网络的住户级短期负载预测方法 下载:166 浏览:2020
摘要:
随着智能电表的发展,对区域级、建筑级的负载预测准确度逐步提高,但在住户级负载预测领域,因其突变性、波动性更强,该领域仍面临着巨大挑战。为了解决这些问题,提出多重检测长短期记忆模(Multi-detection-LSTM),即在传统聚类方法上引入深度学习领域的LSTM模型,使其面对不同的住户数据时能自适应其用电习惯,对单户人家用电量进行精准预测。与传统模型相比,Multi-detection-LSTM有效的消除了住户级负载预测面临的波动性问题,具有更高的准确度。
[1/1]

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2