检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
家谱文本中实体关系提取方法研究
下载:
33
浏览:
310
任明1
许光2
王文祥2
《当代中文学刊》
2020年10期
摘要:
实现家谱资源的高效的组织和利用,需要从非结构化的家谱文本中提取实体及关系,进行结构化的表示。实体和关系的提取通常被作为序列标注任务来解决,输入的句子被映射到标签序列。针对家谱文本中实体和关系高度密集、关系重叠很常见的特点,该文构建了相应的概念模型来指导整个提取过程。在序列标注部分,该文在真实数据上检验了常用的深度学习模型的表现。实验结果显示,BERT-BiLSTM-CRF模型的精确率、召回率和F1值均优于所对比的其他模型,该文所提出的方法能够有效地解决家谱文本中的实体关系提取问题。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享