检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于用户信任的协同推荐算法研究与分析
下载:
74
浏览:
345
徐吉1
李小波2
许浩2
《数据与科学》
2019年4期
摘要:
协同过滤算法一般根据用户的评价信息来推测用户的喜好,但受到数据稀疏问题的影响,许多时候无法得到较为理想的推荐结果;除此之外,一般协同推荐算法忽略了用户兴趣的动态变化;考虑到传统协同过滤算法存在上述问题,本文进行了研究,并提出了改进后的协同过滤推荐算法。整个算法的具体执行过程如下所示:第一步是根据用户偏好构建一个兴趣迁移模型,然后依据具体的评分时间对多个项目评分进行有速度差异的衰减,衰减完成之后得到项目评分矩阵,并将其应用到相似度的计算中;采用这种方式能够有效地解决用户兴趣变化引起的、推荐结果准确性降低的问题。然后是构建一个合适的用户信任度模型,根据T-采用率、可信度来对用户的信任度进行计算。最后将得到的信任度与基于时间的相似度进行线性组合,依据其权重大小进行最近邻选择与项目评分,并通过实验的方式,证明算法Improvement-CF能够有效提升推荐结果的准确性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享