请选择 目标期刊

MCA-Reader:基于多重联结机制的注意力阅读理解模型 下载:43 浏览:389

张禹尧 蒋玉茹 毛腾 张仰森 《中文研究》 2019年5期

摘要:
机器阅读理解是当下自然语言处理的一个热门任务,其内容是:在给定文本的基础上,提出问题,机器要在给定文本中寻找并给出最终问题的答案。片段抽取式阅读理解是当前机器阅读理解研究的一个典型的方向,机器通过预测答案在文章中的起始和结束位置来定位答案。在此过程中,注意力机制起着不可或缺的作用。该文为了更好地解决片段抽取式机器阅读理解任务,提出了一种基于多重联结机制的注意力阅读理解模型。该模型通过多重联结的方式,更有效地发挥了注意力机制在片段抽取式机器阅读理解任务中的作用。利用该模型,在第二届"讯飞杯"中文机器阅读理解评测(CMRC2018)的最终测试集上EM值为71.175,F1值为88.090,排名第二。

机器阅读理解中观点型问题的求解策略研究 下载:79 浏览:348

段利国 高建颖 李爱萍 《中文研究》 2019年5期

摘要:
针对机器阅读理解中观点型问题的求解,提出一个端到端深度学习模型,使用Bi-GRU对文章和问题进行上下文语义编码,然后运用基于拼接、双线性、点乘和差集4种函数的注意力加上Query2Context和Context2Query两个方向注意力的融合算法获取文章和问题的综合语义信息,之后运用多层注意力转移推理机制不断聚焦,进一步获取更加准确的综合语义,最终将其与候选答案进行比较,选出正确答案。该模型在AIchallager2018观点型阅读理解中文测试数据集上准确率达到76.79%,性能超过基线系统。此外,该文尝试文章以句子序列作为输入表示进行答案求解,准确率达到78.48%,获得较好试验效果。

基于多篇章多答案的阅读理解系统 下载:43 浏览:399

刘家骅1,2 韦琬2 陈灏2 杜彦涛2 《中文研究》 2018年11期

摘要:
机器阅读理解任务一直是自然语言处理领域的重要问题。2018机器阅读理解技术竞赛提供了一个基于真实场景的大规模中文阅读理解数据集,对中文阅读理解系统提出了很大的挑战。为了应对这些挑战,我们在数据预处理、特征表示、模型选择、损失函数的设定和训练目标的选择等方面基于以往的工作做出了对应的设计和改进,构建出一个最先进的中文阅读理解系统。我们的系统在正式测试集ROUGE-L和BLEU-4上分别达到了63.38和59.23,在105支提交最终结果的队伍里面取得了第一名。

一种基于数据重构和富特征的神经网络机器阅读理解模型 下载:52 浏览:379

尹伊淳 张铭 《中文研究》 2018年10期

摘要:
该文描述了ZWYC团队在"2018机器阅读理解技术竞赛"上提出的机器理解模型。所提出模型将机器阅读理解问题建模成连续文本片段抽取问题,提出基于富语义特征的神经交互网络模型。为了充分使用答案标注信息,模型首先对数据进行细致的重构,让人工标注的多个答案信息都能融合到数据中。通过特征工程,对每个词构建富语义表征。同时提出一种简单有效的问题和文档交互的方式,得到问题感知的文档表征。基于多个文档串接的全局表征,模型进行答案文本预测。在最终测试集上,该模型获得了目前先进的结果,在105支队伍中排名第2。

基于BiDAF多文档重排序的阅读理解模型 下载:28 浏览:443

杨志明1,2,3 时迎成3 王泳2 潘昊杰3 毛金涛3 《中文研究》 2018年10期

摘要:
随着互联网的兴起和发展,数据规模急速增长,如何利用机器阅读理解技术对海量的非结构化数据进行解析,从而帮助用户快速、准确地查找到满意答案,是目前自然语言理解领域中的一个热门课题。该文通过对机器阅读理解中的深度神经网络模型进行研究,构建了RBiDAF模型。首先,通过对DuReader数据集进行数据探索,并对数据进行预处理,从中提取出有利于模型训练的特征。其次在BiDAF模型的基础上提出了基于多文档重排序的RBiDAF机器阅读理解模型,该模型在BiDAF模型四层网络框架的基础上添加了ParaRanking层。其中在ParaRanking层,该文提出了多特征融合的ParaRanking算法,此外在答案预测层,提出了基于先验知识的多答案交叉验证算法,进而对答案进行综合预测。在"2018机器阅读理解技术竞赛"的最终评测中,该模型表现出了不错的效果。

T-Reader:一种基于自注意力机制的多任务深度阅读理解模型 下载:47 浏览:360

郑玉昆1 李丹2 范臻1 刘奕群1 张敏1 马少平1 《中文研究》 2018年10期

摘要:
该文介绍THUIR团队在"2018机器阅读理解技术竞赛"中的模型设计与实验结果。针对多文档机器阅读理解任务,设计了基于自注意力机制的多任务深度阅读理解模型T-Reader,在所有105支参赛队伍中取得了第八名的成绩。除文本信息外,提取了问题与段落精准匹配等特征作为模型输入;在模型的段落匹配阶段,采用跨段落的文档级自注意力机制,通过循环神经网络实现了跨文档的问题级信息交互;在答案范围预测阶段,通过进行段落排序引入强化学习的方法提升模型性能。

D-Reader:一种以全文预测的阅读理解模型 下载:75 浏览:331

赖郁婷1 曾俋颖1 林柏诚2 萧瑞辰2 邵志杰1 《中文研究》 2018年10期

摘要:
该文针对2018机器阅读理解技术竞赛提出一个基于双向注意流(BiDAF)BiDAF的阅读理解模型,实作于DuReader中文问答数据集。该文观察到基线系统采用与问题最相近的段落,作为预测的筛选条件,而改以完整段落来预测答案,结果证实优于原方法。并利用fastText训练词向量以强化上下文信息,最后通过集成学习优化结果,提升效能与稳定性。此外,针对DuReader的是非类题型,该文集成两个分类模型,分别基于注意力机制(attention)与相似性机制(similarity)来预测答案类别。该模型最终在"2018机器阅读理解技术竞赛"的评比中得到了ROUGE-L 56.57与BLEU-4 48.03。

2018机器阅读理解技术竞赛总体报告 下载:47 浏览:208

刘凯 刘璐 刘璟 吕雅娟 佘俏俏 张倩 时迎超 《中文研究》 2018年7期

摘要:
机器阅读理解是自然语言处理和人工智能领域的前沿课题,"2018机器阅读理解技术竞赛"旨在推动相关技术研究和应用的发展。竞赛发布了最大规模的中文阅读理解数据集,提供了先进的开源基线系统,采用改进的自动评价指标,吸引了国内外千余支队伍参与,参赛系统效果提升显著。该文详细介绍技术竞赛的总体情况、竞赛设置、组织流程、评价结果,并对参赛系统结果进行了分析。

N-Reader:基于双层Self-attention的机器阅读理解模型 下载:17 浏览:384

梁小波 任飞亮 刘永康 潘凌峰 侯依宁 张熠 李妍 《中文研究》 2018年7期

摘要:
机器阅读理解是自然语言处理和人工智能领域的重要前沿课题,近年来受到学术界和工业界的广泛关注。为了提升机器阅读理解系统在多文档中文数据集上的处理能力,我们提出了N-Reader,一个基于神经网络的端到端机器阅读理解模型。该模型的主要特点是采用双层self-attention机制对单个文档以及所有输入文档进行编码。通过这样的编码,不仅可以获取单篇文档中的关键信息,还可以利用多篇文档中的相似性信息。另外,我们还提出了一种多相关段落补全算法来对输入文档进行数据预处理。这种补全算法可以帮助模型识别出具有相关语义的段落,进而预测出更好的答案序列。使用N-Reader模型,我们参加了由中国中文信息学会、中国计算机学会和百度公司联手举办的"2018机器阅读理解技术竞赛",取得了第3名的成绩。

基于标签增强的机器阅读理解模型 下载:61 浏览:357

苏立新1,2 郭嘉丰2 范意兴1 兰艳艳2 程学旗3 《人工智能研究》 2020年5期

摘要:
抽取式问答中已有模型仅建模答案的边界,忽视人的潜在标注过程,导致模型仅学习到表面特征,影响泛化能力.因此,文中提出基于标签增强的机器阅读理解模型(LE-Reader),模拟人的标注过程.LE-Reader模型同时建模答案所在句子、答案内容和答案边界.根据用户标注的答案边界推断正确答案的句子和答案内容作为标签,监督模型的学习过程.通过多任务学习的方式融合3个损失函数.预测时融合3种建模结果,确定最终答案,提高模型的泛化性能.在SQuAD数据集上的实验验证LE-Reader的有效性.

结合外部知识的动态多层次语义抽取网络模型 下载:65 浏览:339

姜文超1 庄志刚1 涂旭平2 利传杰3 刘海波1 《人工智能研究》 2019年10期

摘要:
针对复杂多文本机器阅读理解任务中的语义理解与答案提取问题,提出结合外部知识的动态多层次语义理解与答案抽取模型.首先利用改进的门控单元循环神经网络匹配文本内容与问题集,分别在向量化文本内容及问题集上实施多维度动态双向注意力机制分析,提高语义匹配精度.然后利用动态指针网络确定问题答案范围,改进网络模型语义匹配效率,降低答案提取冗余度.最后结合外部知识与经验改进候选答案精准性排序,得到最终答案.实验表明文中模型的语义匹配与答案提取精度显著提升,对不同领域的复杂文本阅读理解任务具有较高的鲁棒性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享