请选择 目标期刊

基于BP神经网络的北京夏季日最大电力负荷预测方法 下载:71 浏览:207

李琛1 郭文利2 吴进3 金晨曦2 《气候变化研究》 2019年2期

摘要:
利用2006~2017年北京夏季(6~8月)逐日最大电力负荷和同期气象资料,分析最大电力负荷与各种气象因子的相关性,基于BP(BackPropagation)神经网络算法,建立了两种夏季日最大电力负荷预测模型并对比。结果表明:北京夏季周末基础负荷远小于工作日,剔除时应加以区分;气象因子对气象负荷的影响具有累积效应,累积2 d时两者的相关性最强;结合实际,根据自变量的不同分别建立了两种日最大电力负荷预测模型;经实际预测检验,两种预测模型均取得了较好的预测效果,能够满足电力部门的实际需求,其中自变量中加入前一日气象负荷的模型效果更优。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享