检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
面向神经机器翻译的模型存储压缩方法分析
下载:
42
浏览:
423
林野
姜雨帆
肖桐
李恒雨
《当代中文学刊》
2019年2期
摘要:
模型存储压缩,旨在在不改变模型性能的同时,大幅度降低神经网络中过多的模型参数带来的存储空间浪费。研究人员对于模型存储压缩方法的研究大多数在计算机视觉任务上,缺乏对机器翻译模型压缩方法的研究。该文在机器翻译任务上通过实验对比剪枝、量化、低精度三种模型压缩方法在Transformer和RNN(recurrent neural network)两种模型上的模型压缩效果,最终使用剪枝、量化、低精度三种方法的组合方法可在不损失原有模型性能的前提下在Transformer和RNN模型上分别达到5.8×和11.7×的压缩率。同时,该文还针对三种模型压缩方法在不同模型上的优缺点进行了分析。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享