请选择 目标期刊

一个面向中文古诗词理解难易度的人工标注数据集 下载:46 浏览:398

刘磊1,2 何苯1,2 孙乐2 《中文研究》 2020年7期

摘要:
向读者推荐阅读难度合适的古诗词有助于提升读者的诗词鉴赏能力。现阶段,围绕古诗词可读性自动化分析的相关研究的突出局限之一是缺乏大规模高质量的数据集。针对该问题,该文研究面向古诗词可读性自动化分析的数据集构建。该文作者对外开放了包含1 915篇古诗词的标注阅读理解难度的数据集(1)。该文首先将数据集划分成易中难三级,构建数据集APRD;然后进一步细化标注,构建六级分类数据集APRD+。抽取教材中的诗词组成标准集,以年级为标准难度级别,计算标准集与APRD、APRD+之间的Spearman相关性,Spearman系数分别为0.786与0.804,表明该数据集标记结果与标准集具有较高一致性。该文提取了字频、注释数等古诗词特征,采用SVM、随机森林等算法进行了初步古诗词阅读理解难易度分类测试。文内提出的古诗词可读性数据集与实验结果可作为后续研究的测试基准。

基于弱标注数据的汉语分词领域移植 下载:46 浏览:211

朱运 李正华 黄德朋 张民 《中文研究》 2019年4期

摘要:
近年来,基于神经网络的分词模型在封闭领域文本上取得了很高的性能。然而,在领域移植场景下,即测试数据与训练数据的领域差异较大时,分词的性能会显著下降。该文尝试利用自动获取的弱标注数据来提升领域移植场景下的分词性能。首先,对目前性能最好的BiLSTM-CRF分词模型进行扩展,引入适用于弱标注数据的损失函数;进而提出一种简单有效的数据筛选方法,从海量弱标注数据中筛选和目前领域更相关的数据;最后,该文发现数据预处理和在神经网络中引入传统特征均可以有效提高分词性能。在SIGHAN Bakeoff 2010和ZhuXian标注测试集上的实验结果表明,该文所提方法可有效提升汉语分词领域移植性能,平均F值提高了3.6%。

基于远程监督的人物属性抽取研究 下载:41 浏览:358

马进 杨一帆 陈文亮 《当代中文学刊》 2020年10期

摘要:
属性抽取的主要目标是从非结构化文本中获取实体的属性值。为了从文本中抽取出人物属性,通常需要大量的标注数据,然而这些数据资源却十分稀少。为了解决这个问题,该文从百科类网页的表格数据出发,构建了人物属性表,然后采用远程监督的方法得到大规模、多类别的人物属性标注语料,从而免去了人工标注的繁琐流程。针对新构建的数据集,分别使用条件随机场(CRF)和双向长短期记忆-条件随机场(BiLSTM-CRF)构建了属性抽取的两个基线模型。实验结果表明,BiLSTM-CRF取得比CRF更好的性能,其中BiLSTM-CRF的平均F1值为83.39%。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享