请选择 目标期刊

基于语言特征自动获取的反问句识别方法 下载:35 浏览:324

李旸1 吴卓嘉1 王素格1 梁吉业2 《当代中文学刊》 2020年3期

摘要:
反问句是以疑问的形式表达强烈情感的修辞方式,对其有效识别可为自然语言处理中的情感分析任务提供技术支持。该文提出了一种基于语言特征自动获取的反问句识别方法。首先,利用标签注意机制,建立了一个数据驱动的特征抽取模型,用于获取与任务相关的词汇、句法结构、符号标记和话题等语言特征。其次,利用Bi-LSTM模型分别对句子和语言特征进行表示,两者的交互注意被用于获取句子的各个词和符号的注意力权重向量。该权重向量作用于句子的表示,用于构建一个强化语言特征的反问句识别模型。在中文微博数据集上的实验结果表明,提出的方法与之前的工作相比,反问句识别性能有显著提升。

基于识别关键样本点的非平衡数据核SVM算法 下载:72 浏览:398

郭婷1 王杰1 刘全明1 梁吉业2 《人工智能研究》 2019年12期

摘要:
非平衡数据处理中常采用的欠采样方法很少考虑支持向量机(SVM)的特性,并且在原始空间进行采样会导致多数类样本部分关键信息的丢失.针对上述问题,文中提出基于识别关键样本点的非平衡数据核SVM算法.基于初始超平面有效划分多数类样本,在高维空间中对每个分块进行核异类近邻抽样,得到多数类中的关键样本点,使用关键样本点和少数类样本训练最终核SVM分类器.在多个数据集上的实验证明文中算法的可行性和有效性,特别是在非平衡度高于10∶1的数据集上,文中算法优势明显.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享