请选择 目标期刊

基于文体和词表的突发事件信息抽取研究 下载:39 浏览:397

邱奇志 周三三 刘长发 陈晖 《中文研究》 2018年5期

摘要:
非结构化数据的结构化任务是大数据环境下管理信息系统面临的新课题。该文从文体的角度研究自由文本的特性,提出了从Web新闻中抽取突发事件属性的方法,该方法首先分析研究了Web文本和新闻文体的特征,利用Google Word2Vec对领域专家构建的词表进行扩展,针对突发事件的不同属性制定了不同的抽取方法:采用词表实现事件分类,采用文体特征进行时间、事件摘要的抽取,采用文体和词表进行地点、伤亡情况和经济损失属性的抽取。实验表明,采用基于文体和词表方法在爬取的Web新闻语料库和公开语料库进行突发事件的属性进行抽取时,平均准确率分别为87.89%、91.29%,平均召回率分别为81.76%、87.91%,能满足应急管理需求。

基于性格情绪特征的改进主题情感模型 下载:30 浏览:299

李玉强1 黄瑜1 孙念1 李琳1 刘爱华2 《当代中文学刊》 2020年11期

摘要:
近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特征纳入主题情感模型中;鉴于微博数据包含大量的表情符号之类的特有信息,为了充分利用表情符号来提升微博情感识别性能,该文将情感符号融入JST模型中,进而提出了一种改进的主题情感联合模型UC-JST(Joint Sentiment/Topic Model Based on User Character)。通过在真实的新浪微博数据集上进行实验,结果表明UC-JST情感分类效果优于JST、TUS-LDA、JUST、TSMMF四种典型的无监督情感分类方法。

基于LU分解和交替最小二乘法的分布式奇异值分解推荐算法 下载:57 浏览:374

李琳 王培培 谷鹏 解庆 《人工智能研究》 2020年2期

摘要:
针对当前分布式潜在因子推荐算法存在时间复杂度较高、运行时间较长的问题,文中提出基于LU分解和交替最小二乘法(ALS)的分布式奇异值分解推荐算法,利用ALS利于分布式求解目标函数的特点,提出网格状分布式粒度分割策略,获取相互独立不相关的特征向量.在更新特征矩阵时,使用LU分解求逆矩阵,加快算法的运行速度.在KDD CUP 2012 Track1中的腾讯微博数据集上的实验表明,文中算法在确保一定推荐精度的前提下,大幅提升推荐速度和算法效率.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享