请选择 目标期刊

基于Bi-tagged特征的维吾尔文情感分类方法研究 下载:55 浏览:411

热西旦木·吐尔洪太1,2 吾守尔·斯拉木1 《中文研究》 2018年2期

摘要:
现有的维吾尔文文本情感分类方法以从空格分词中得到的unigram特征作为文本表示,因而无法挖掘与情感表达相关的深层语言现象。该文从维吾尔文词汇之间的顺序依赖关系入手,总结若干个词性组合规则,提取能够表达丰富情感信息的Bi-tagged特征,并基于支持向量机(SVM)分类器对维吾尔文情感语料库进行了正负情感分类。实验结果表明,在维吾尔文文本情感分类中:(1)当包含该文提出的各项词性规则时,Bi-tagged特征的性能最优;(2)Bi-tagged特征不仅能够提取情感丰富的信息,而且可以提取否定信息;(3)与常用的unigram、bigram特征以及unigram和bigram的组合特征在该文数据集上的分类效果相比,该文所提取的Bi-tagged与unigram的组合特征分类效果更佳,比该文的Baseline的分类准确率提高了4.225%。该研究成果不但可以进一步提高维吾尔文文本情感分类效率,也可为哈萨克语、柯尔克孜语等亲属语言的情感分类提供借鉴。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享