请选择 目标期刊

基于正序迭代选择策略的聚类中心自动选择方法 下载:79 浏览:396

王万良 吕闯 赵燕伟 高楠 杨小涵 张兆娟 《人工智能研究》 2019年4期

摘要:
针对密度峰值聚类算法的决策函数不能自动有效地确定聚类中心的问题,提出自动确定聚类中心的密度峰值聚类算法.首先,通过归一化处理,使决策函数中的两个变量分布均匀.然后,在确定聚类中心时,提出正序迭代选择策略,即根据聚类核心点数目的变化趋势搜索拐点,并以拐点之前的点作为聚类中心,完成聚类.最后,在UCI数据集上验证文中算法的性能,算法在未提高时间复杂度的情况下,可以对任意分布形状的数据集进行聚类,具有较好的适应性和聚类效果.

基于Fisher判别分析的增量式非负矩阵分解算法 下载:67 浏览:439

蔡竞1 王万良1 郑建炜1 罗志坚3 申思2 《人工智能研究》 2018年11期

摘要:
增量式非负矩阵分解算法是基于子空间降维技术的无监督增量学习方法.文中将Fisher判别分析思想引入增量式非负矩阵分解中,提出基于Fisher判别分析的增量式非负矩阵分解算法.首先,利用初始样本训练的先验信息,通过索引矩阵对新增系数矩阵进行初始化赋值.然后,将增量式非负矩阵分解算法的目标函数改进为批量式的增量学习算法,在此基础上施加类间散度最大和类内散度最小的约束.最后,采用乘性迭代的方法计算分解后的因子矩阵.在ORL、Yale B和PIE等3个不同规模人脸数据库上的实验验证文中算法的有效性.

基于进化状态判定的模糊自适应二进制粒子群优化算法 下载:74 浏览:492

李浩君1 张征1 张鹏威1 王万良2 《人工智能研究》 2018年7期

摘要:
随着迭代过程的推进,二进制粒子群算法容易陷入局部最优解,后期收敛性较差.针对此缺点,文中提出基于进化状态判定的模糊自适应二进制粒子群优化算法.采用隶属函数进行模糊分类的方法,判定种群进化状态.在迭代过程前期采用S形映射函数和较大的惯性权重值,提高收敛速度,保证算法的稳定性.后期采用V形映射函数和动态增减的惯性权重值,增强算法后期全局探索能力,避免其陷入局部最优.仿真实验表明,文中算法的收敛速度较快,精度较高,搜索能力较好,可以避免早熟现象.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享