基于Fisher判别分析的增量式非负矩阵分解算法
蔡竞1 王万良1 郑建炜1 罗志坚3 申思2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

蔡竞1 王万良1 郑建炜1 罗志坚3 申思2 ,. 基于Fisher判别分析的增量式非负矩阵分解算法[J]. 人工智能研究,2018.11. DOI:.
摘要:
增量式非负矩阵分解算法是基于子空间降维技术的无监督增量学习方法.文中将Fisher判别分析思想引入增量式非负矩阵分解中,提出基于Fisher判别分析的增量式非负矩阵分解算法.首先,利用初始样本训练的先验信息,通过索引矩阵对新增系数矩阵进行初始化赋值.然后,将增量式非负矩阵分解算法的目标函数改进为批量式的增量学习算法,在此基础上施加类间散度最大和类内散度最小的约束.最后,采用乘性迭代的方法计算分解后的因子矩阵.在ORL、Yale B和PIE等3个不同规模人脸数据库上的实验验证文中算法的有效性.
关键词: 子空间降维;有监督学习;Fisher判别分析;非负矩阵分解;增量学习
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。