请选择 目标期刊

基于Fisher判别分析的增量式非负矩阵分解算法 下载:67 浏览:439

蔡竞1 王万良1 郑建炜1 罗志坚3 申思2 《人工智能研究》 2018年11期

摘要:
增量式非负矩阵分解算法是基于子空间降维技术的无监督增量学习方法.文中将Fisher判别分析思想引入增量式非负矩阵分解中,提出基于Fisher判别分析的增量式非负矩阵分解算法.首先,利用初始样本训练的先验信息,通过索引矩阵对新增系数矩阵进行初始化赋值.然后,将增量式非负矩阵分解算法的目标函数改进为批量式的增量学习算法,在此基础上施加类间散度最大和类内散度最小的约束.最后,采用乘性迭代的方法计算分解后的因子矩阵.在ORL、Yale B和PIE等3个不同规模人脸数据库上的实验验证文中算法的有效性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享