检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于Fisher判别分析的增量式非负矩阵分解算法
下载:
67
浏览:
439
蔡竞1
王万良1
郑建炜1
罗志坚3
申思2
《人工智能研究》
2018年11期
摘要:
增量式非负矩阵分解算法是基于子空间降维技术的无监督增量学习方法.文中将Fisher判别分析思想引入增量式非负矩阵分解中,提出基于Fisher判别分析的增量式非负矩阵分解算法.首先,利用初始样本训练的先验信息,通过索引矩阵对新增系数矩阵进行初始化赋值.然后,将增量式非负矩阵分解算法的目标函数改进为批量式的增量学习算法,在此基础上施加类间散度最大和类内散度最小的约束.最后,采用乘性迭代的方法计算分解后的因子矩阵.在ORL、Yale B和PIE等3个不同规模人脸数据库上的实验验证文中算法的有效性.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享