请选择 目标期刊

基于ATT-IndRNN-CNN的维吾尔语名词指代消解 下载:26 浏览:407

祁青山1 田生伟1 禹龙2 艾山·吾买尔2 《中文研究》 2019年2期

摘要:
该文提出一种基于注意力机制(attention mechanism,ATT)、独立循环神经网络(independently recurrent neural network,IndRNN)和卷积神经网络(convolutional neural network,CNN)结合的维吾尔语名词指代消解模型(ATT-IndRNN-CNN)。根据维吾尔语的语法和语义结构,提取17种规则和语义信息特征。利用注意力机制作为模型特征的选择组件计算特征与消解结果的关联度,结果分别输入IndRNN和CNN得到包含上下文信息的全局特征和局部特征,最后融合两类特征并使用softmax进行分类完成消解任务。实验结果表明,该方法优于传统模型,准确率为87.23%,召回率为88.80%,F值为88.04%,由此证明了该模型的有效性。

维吾尔语词缀变体搭配规则研究及算法实现 下载:28 浏览:412

艾孜麦提·艾尼瓦尔1,2,3 董军1,3 李晓1,3 《中文研究》 2018年12期

摘要:
该文介绍了维吾尔语词干结构特征、词缀结构特征及维吾尔语语音和谐律;以维吾尔语语音和谐律为基础,在充分考虑基本搭配规则和特殊规则的前提下,提出一种基于词干、词缀结构特征的维吾尔语词缀变体搭配算法;验证词干、词缀结构特征提取的正确性和完整性,并对500个名词词干和300个动词词干进行词缀变体搭配,分别生成9 000个名词和37 800个动词。借助维吾尔语文字校对系统和人工验证的方法,对生成的所有单词进行词缀变体搭配准确性验证;实验结果表明,名词和动词词干搭配词缀准确率分别为98.40%和96.49%,整体搭配准确率为96.86%;最后对搭配错误原因进行了分析。

基于稳健词素序列和LSTM的维吾尔语短文本分类 下载:56 浏览:375

沙尔旦尔·帕尔哈提米吉提·阿不里米提艾斯卡尔·艾木都拉 《当代中文学刊》 2020年2期

摘要:
维吾尔语是一种派生类语言,其词是由词干和词缀连接而成的。其中,词干是有实际意义的词汇单元,词缀提供语法功能。该文提出了基于词干单元和长短期记忆(LSTM)网络的维吾尔语短文本分类技术。用基于词-词素平行训练语料的稳健词素切分和词干提取方法,从互联网下载的文本中提取其词干,以此构建词干序列文本语料库,并通过Word2Vec算法映射到实数向量空间。然后用LSTM网络作为特征选择和文本分类算法进行维吾尔语短文本分类实验,并得到95.48%的分类准确率。从实验结果看,对于维吾尔语等派生类语言而言,特别是对于带噪声的文本,基于词干的分类方法有更多优异的性能。

基于汉维映射关系构建维吾尔语依存树库 下载:53 浏览:283

吐尔洪·吾司曼1,2,3 杨雅婷1,2,3 王磊1,2,3 周喜1,2,3 程力1,2,3 《当代中文学刊》 2019年1期

摘要:
该文提出一种基于汉语依存句法信息来构建维维吾尔语依存句法树库的方法。首先对维吾尔语进行形态分析,之后进行汉维词对齐、中文依存分析,然后根据词对齐信息以及汉语依存信息得到维吾尔语依存信息,最终对结果进行优化,获得维吾尔语依存句法库。在此基础上训练得到的依存句法分析器在CoNLL 2017Shared Task测试集上进行实验,带标记依存正确率LAS(Labeled Attachment Score)和无标记依存正确率UAS(Unlabeled Attachment Score)分别为34.38%和52.53%。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享