请选择 目标期刊

基于神经网络的藏文正字检错法 下载:32 浏览:276

色差甲1 慈祯嘉措1 才让加1,2 华果才让1 《中文研究》 2020年9期

摘要:
在缺乏标注数据的条件下,该文将藏文正字检错任务视为一个分类问题:首先从语言学知识中构建音节混淆子集并给每个原句加噪,然后建立深层双向表征的BERT作为分类模型,最后为了证明该方法的有效性,构建两个基线模型和三种不同领域的测试集,实验结果表明,该方法的结果优于两个基线模型。该文方法在相同领域测试集上句子分类的正确率达到93.74%,不同领域测试集上也能达到83.6%。对错误音节的识别率为74.53%,同时对无错误音节的误判率只有2.30%。

基于迭代式回译策略的藏汉机器翻译方法研究 下载:52 浏览:246

慈祯嘉措1,2 桑杰端珠1,2 孙茂松3 周毛先1,2 色差甲1,2 《中文研究》 2020年6期

摘要:
该文通过稀缺语言资源条件下机器翻译方法的研究以提高藏汉机器翻译质量,同时希望对语言资源匮乏的其他少数民族语言机器翻译研究提供借鉴。首先该文使用164.1万句对藏汉平行语言资源数据在Transformer神经网络翻译模型上训练一个基线系统,作为起始数据资源,然后结合翻译等效性分类器,利用迭代式回译策略和译文自动筛选机制,实现了稀缺资源条件下提升藏汉神经网络机器翻译性能的有效模型,使最终的模型比基准模型在藏到汉的翻译上有6.7个BLEU值的提升,在汉到藏的翻译上有9.8个BLEU值的提升,证实了迭代式回译策略和平行句对过滤机制在汉藏(藏汉)机器翻译中的有效性。

融合单语语言模型的藏汉机器翻译方法研究 下载:60 浏览:252

慈祯嘉措1,2 桑杰端珠1,2 孙茂松3 色差甲1,2 周毛先1,2 《中文研究》 2019年11期

摘要:
由于藏汉平行语料匮乏,导致藏汉神经网络机器翻译效果欠佳,该文提出了一种将藏语单语语言模型融合到藏汉神经网络机器翻译的方法,首先利用神经网络实现藏语单语语言模型,然后使用Transformer实现藏汉神经网络机器翻译模型,最后将藏语单语语言模型融合到藏汉神经网络机器翻译中。实验表明,该方法能显著提升藏汉神经网络机器翻译质量。基线系统藏语到汉语的BLEU值为21.1,汉语到藏语的BLEU值为18.6,融合藏语单语语言模型后,藏语到汉语的BLEU值为24.5,汉语到藏语的BLEU值为23.3,比原有基线系统的BLEU值分别提高了3.4和4.7。

注意力的端到端模型生成藏文律诗 下载:47 浏览:418

色差甲1,2 华果才让1,2 让加1,2 慈祯嘉措1,2 柔特1,2 《当代中文学刊》 2019年12期

摘要:
文本自动撰写在自然语言处理中是一个重要的研究领域,可通过人工智能的方法来提升文本的生成结果。目前主流的生成方法是基于深度学习的方法,而该文则提出了一种基于注意力的端到端模型生成藏文律诗法。该方法基本框架是一个双向LSTM的编码—解码模型,在此基础上引入了藏文字嵌入、注意力机制和多任务学习法。实验结果表明,该文提出的方法在藏文律诗生成结果中BLEU值和ROUGE值分别能达到59.27%、62.34%,并无需任何人为的特征设置。

藏文音节拼写检查的CNN模型 下载:24 浏览:264

色差甲1,2 贡保才让1,2 才让加1,2 《当代中文学刊》 2019年1期

摘要:
藏文音节拼写检查是藏语自然语言处理的基本任务,在藏文文字处理、文字识别、文本生成等领域具有广泛的应用。该文首先针对藏文音节的结构提出了音节向量化的方法,即音节矩阵。然后构建了适合于藏文音节拼写检查的CNN模型,使用1 364 880个藏文音节进行训练。最后对68 244个藏文音节进行测试。实验结果显示,藏文音节拼写检查CNN模型的结果优于规则、RNN和LSTM等模型,不仅对符合藏文文法的音节能正确识别外,而且对梵音藏文音节也能有效识别,正确率、召回率以及F值分别为99.52%、99.30%和99.41%。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享