检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
一种改进蚁群算法的移动机器人快速路径规划算法研究
下载:
77
浏览:
472
谭会生1
廖雯2
贺迅宇3
《动力技术研究》
2019年6期
摘要:
以Dijkstra算法求解移动机器人路径规划(mobile robot path planning,MRPP)问题已得到广泛的应用,但在复杂工况下无法保证求解的正确性和全局最优性.而基于蚁群算法的移动机器人路径规划模型,在一定条件下能可靠地获得全局最优解,但存在求解时间过长的问题.因此,提出一种结合Dijkstra算法和蚁群算法模型两者优势求解MRPP问题的融合优化方法,以实现在短时间内获得全局最优解的目标.首先,应用Dijkstra快速算法在机器人工作环境中粗略寻迹得到最短路径次优解,然后,在次优解路径附近进行工作环境的精确划分;最后,利用蚁群算法在次优解附近精确寻迹,使最终的寻迹结果无限逼近最短路径.仿真结果表明,该融合优化方法既克服了经典蚁群算法求解时间过长的缺点,又能无限逼近全局最优解,寻迹时间较蚁群算法可缩短90%以上.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享