检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于非对称孪生网络的新闻与案件相关性分析
下载:
32
浏览:
319
赵承鼎1 郭军军2 余正涛2 黄于欣2 刘权1 宋燃2
《当代中文学刊》
2020年5期
摘要:
新闻与案件的相关性分析是法律领域新闻舆情分析的重要环节,可转化为新闻文本与案件文本的相似度计算任务。借助孪生网络计算文本相似度是一种有效途径,其对平衡样本具有良好的学习能力,但在新闻与案件的相关性计算中面临文本不平衡和新闻文本冗余的问题,因此,该文提出了基于非对称孪生网络的新闻与案件相关性计算方法。通过计算文本中句子与标题的相似度选取与新闻标题最相关的句子表征文档,去除新闻文本中的冗余句子,利用非对称孪生网络建模,考虑到案件要素蕴含案件的关键语义信息,将案件要素作为监督信息融入到非对称孪生网络中对新闻文档和案件描述进行编码,解决新闻和案件在结构和语义上不平衡的问题,最终实现新闻与案件的相关性判断。实验表明该模型相比基线模型准确率提升了2.52%。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享