请选择 目标期刊

不同分类方法在土地利用信息提取中的精度对比 下载:58 浏览:428

何立恒1 覃伟2 徐迅3 《测绘科学与技术》 2018年12期

摘要:
以东方市为研究区,对OLI影像分别采取基于像元的五种分类方法实施土地利用分类,自评和对比验证分析影像在不同分类方法、不同土地利用类型上的分类精度。研究结果表明:在相同样本量和没有辅助数据的情况下,监督分类精度高于非监督分类,支持向量机的分类方法能够较好地提取土地利用信息,各地类的用户精度、生产者精度较高,总体精度达88.13%,Kappa系数为0.86。不同地类的分类精度差异明显,建设用地和水域的分类精度较高,未利用地和耕地的分类精度较低,林地、草地、耕地等绿色植被之间存在混淆。该研究成果为合理选择分类方法应用于土地利用信息提取提供科学依据。

基于CycleGAN超分辨重构的水下图像增强算法 下载:40 浏览:272

邱皖1 李然1 郑睿谦2 《中国水产学报》 2023年1期

摘要:
为了提高水下图像的清晰度和对比度,恢复水下图像颜色特性,提出了一种基于非监督超分辨重构的方法(SR-CycleGAN)对水下图像进行增强。该方法采用超分辨网络和退化网络学习水下图像和陆地图像之间的跨域映射函数,使用相对平均判别器,增加了内容损失函数,并将SR-CycleGAN模型与4种传统的水下图像增强模型和5种基于深度学习的模型,在同一数据集上进行增强效果比较。结果表明:本文中构建的SR-CycleGAN模型得到了最高的PSNR值(20.277)和SSIM值(0.727),与SESS-CycleGAN模型相比,PSNR和SSIM值分别提高了5.9%、13.9%,与FEATURE FUSION-CycleGAN模型相比分别提高了13.8%、71.8%,与BM-CycleGAN模型相比分别提高了5.1%、1.1%;对7类海洋生物进行识别,经过SR-CycleGAN模型增强后图像的识别准确率提高了48%。研究表明,本文中提出的SR-CycleGAN模型在校正水下图像颜色失真的同时还增强了图像清晰度,在海洋生物水下图像识别中具有一定的实用性。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享